
Pratt & Whitney Canada PT6 Engine
The march of aircraft progress is tied to advances in propulsion technology. Here we celebrate the most significant engines in aviation history.
Brief
On December 17, 1903, Orville and Wilbur Wright capped four years of research and design efforts with a 120-foot, 12-second flight at Kitty Hawk, North Carolina - the first powered flight in a heavier-than-air machine.
Isaac Newton was the first to theorize, in the 18th century, that a rearward-channeled explosion could propel a machine forward at a great rate of speed. However, no one found a practical application for the theory until Sir Frank Whittle, a British pilot, invented the first jet engine in 1930. His invention transformed travel & airborne combat forever.
However, the Germans were the first to build and test a jet aircraft. Based on a design by Hans von Ohain, a student whose work was independent of Whittle's, it flew in 1939, although not as well as the Germans had hoped. It would take another five years for German scientists to perfect the design, by which time it was, fortunately, too late to affect the outcome of the war.
Here is IDN's pick for the top 10 aircraft engines of all time to emerge from the march of power-plant evolution.
10 General Electric H80 Engine
Competing with the Pratt & Whitney PT6A, one of the most successful engines ever produced, is no small task. But the 800 shaft horsepower General Electric H80 engine is giving a good go of it. Introduced in the highly respected Thrush 510G crop-duster, the H80 was developed out of Walter Aircraft Engines’ M601 after GE acquired the Czech company in 2008. While now American-owned, the H80 is still produced in the Czech Republic and was first certified by European Aviation Safety Agency in December 2011. FAA certification was achieved a few months later. With a successful introduction, the H80 has been STC’d for the King Air C90 and will power Nextant’s modified version of the twin-turboprop, the G90XT.
09 Continental IOF-240 Engine
One of the biggest complaints from pilots over the past few decades is that aircraft engine technology lags far behind that of auto engines. In the mid-1990s, Continental worked to change that impression with its IOF-240 engine. The “F” in IOF-240 stands for full-authority digital engine control, or fadec, which is a fancy way of saying the engine automatically handles many of the chores — such as prop revolutions per minute, spark advance and fuel-air ratio — that are either fixed or controlled mechanically by the pilot in most light-plane applications. When introduced in 2002, the engine was rare in that it had neither magnetos nor mixture control. Instead, the ignition and fuel flow are controlled electronically. In addition to providing the optimal fuel/air mixture — the IOF-240 burns about 5 gallons per hour — the electronic system allows for more accurate engine analysis and troubleshooting. The IOF-240 was first introduced in the Liberty XL2, a two-seat carbon fiber airplane developed from the Europa kit airplane, which became the first piston-engine airplane certified with FADEC.
08 Pratt & Whitney Canada PW600 Engine
As aircraft designers pursued the dream of a very light jet in the late ’90s and early 2000s, one necessary aspect remained elusive: a workable engine. While other attempts developed at the time flopped, the PW600 series made the idea of a personal light jet a feasible reality. Built using half the components of a conventional turbofan, the PW600 provided a lightweight, compact, easy-to-maintain engine that could produce enough power to help this new class of bizjets meet FAA performance benchmarks. The PW600 family comes equipped with dual-channel full-authority digital engine control and includes engines that produce 950 to 1,750 pounds of thrust. Thanks to their reliability and proven performance, PW600 models can be found in a variety of light bizjets, including the Eclipse 550, the Cessna Mustang and the Embraer Phenom 100.
07 Junkers Jumo 004 Engine
The Junkers Jumo 004 was the world's first axial compressor turbojet engine in practical and operational use. This engine was one of a few jet engines engineered by the Germans in the late 1930s and early 1940s to power early fighter jets in the quest to produce the ultimate fighter airplane. The Jumo 004 powered the twin-engine Messerschmitt Me 262, the first jet fighter put into operation during World War II. At 152 inches, the engines were almost as long as the Me 262’s fuselage and produced almost 2,000 pounds of thrust. Unfortunately, these early jet engines were notoriously unreliable. Their average service life was only about a dozen hours.
06 Pratt & Whitney F119 Engine
The Pratt & Whitney F119 is a technological beast that powers the world’s first — and for now, only — operational fifth-generation fighter. There’s no question it is among the most advanced production engines ever made. It combines stealth technology and vectored thrust to give the Lockheed Martin F-22 unprecedented maneuverability. The engine delivers 35,000 pounds of thrust, enough to power the F-22 to supersonic speeds without afterburner. In addition to the F-22, the F119 engine has been proposed for the Rockwell B1-R, a potential upgrade to the B1-B that would increase the bomber’s speed from Mach 1.25 to Mach 2.2.
05 General Electric J85 Engine
The General Electric J85 was originally developed to power a decoy drone that would protect B-52 bombers from incoming surface-to-air missiles. The military was soon making use of the small turbojet engine to power the Northrop T-38 Talon and F-5. The civilian version of the engine, the CJ610, became a mainstay of early corporate aviation in the first Lears and the Hansa Jet. Today the J85 powers Scaled Composites' White Knight, the carrier airplane for SpaceShipOne. It has also been chosen for planned reproductions of the German Me 262 from an Everett, Washington, company. The U.S. Air Force plans to keep the engines in service through 2040, a testament to the J85’s longevity and durability.
04 Whittle Engine
British RAF officer Sir Frank Whittle is recognized as the father of the jet engine for his pioneering work before World War II. He is credited with single-handedly inventing the turbojet engine, which the RAF unfortunately failed to grasp as the revolutionary creation it was. Because the plans were never kept secret, German engineers easily reverse-engineered Whittle’s work.
The breakthrough for Whittle had come in the late 1920s, when he realized how much more efficient it would be to use a turbine instead of a piston engine to compress the air in a jet engine. By 1940, Whittle formed a British company called Power Jets Limited to build an engine. The W.1 turbojet engine was soon a reality, powering the Gloster E.28 prototype, the first British jet airplane, on its first flight on May 15, 1941.
03 Rolls-Royce/Snecma Olympus 593 Engine
Conceived in the 1940s, the Rolls-Royce/Olympus was the world’s first two-spool, axial flow turbojet engine, the most famous version of which powered the supersonic Concorde to legendary speeds. The engine was originally developed and produced by Bristol Aero Engines in England before Rolls-Royce bought the company. It powered the famed AVRO Vulcan bomber (which India operated for several years and saw victorious action against Pakistan) and was selected for the BAC TSR-2, a proposed Cold War strike and reconnaissance aircraft that became the victim of ever-rising costs. The Rolls-Royce/Snecma Olympus 593 remains as the only afterburning jet engine ever to power a commercial airliner. Four Olympus 593 engines each producing 32,000 pounds of thrust enabled Concorde to cruise at Mach 2.2.
02 Pratt & Whitney Canada PT6 Engine

01 Eurojet EJ200

The first series production Eurofighter Typhoon aircraft were flown in February 2003. In service, the EJ200 exceeds or matches the most demanding international standards for operational support required by the US, Europe and other International customers. The Typhoon flew operational missions over Libya as part of Operation Ellamy, totalling 6,000 engine hours without a reject. (Adapted from Flying)
Admin - IDN